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Abstract-Freezing and melting experiments are conducted to visualize the interaction between natural 
convection and the phase change process in porous media. Landau’s transformation is applied to solve the 
irregular moving boundary problem and the computed results agree well with the experimental data. It is 
found that the natural convection process is controlled by the mean Rayleigh number and weakens as the 
freezing process proceeds. Various aspect ratios are examined and they agree reasonably well with Beck’s 

preferred formula for a rectangular box. 

INTRODUCTION 

THE PROBLEM investigated in this paper is phase 
change in a porous medium. This study is an extension 
of an earlier study of phase change (freezing) in a non- 
porous medium [ 11. Dietsche and Miiller [2] studied 
the interactions between the solidification process and 
Btnard convection for a single component fluid exper- 
imentally. They found that when the solidification 
layer is thick compared to the liquid layer, a hysteresis 
loop exists for liquid layer heights in the range of 
subcritical Rayleigh numbers. They also observed 
bimodal patterns characterized by two different length 
scales when the Rayleigh number is above the critical 
value. The influence of lateral walls on the interfacial 
pattern was also included in their paper, i.e. polygonal 
and roll pattern selection. Chellaiah and Viskanta [3] 
investigated the freezing of water in a saturated 
porous medium in the presence of natural convection. 
They studied the vertical heating case with isothermal 
boundaries on the sides. When the wall superheat 
is sufficiently high to induce natural convection, the 
interface becomes nonplanar and local freezing rates 
vary. They mentioned the need for flow visualization, 
especially a non-intrusive method; and an efficient 
numerical method to improve the simulation of the 
freezing process. Numerical and analytical methods 
have been developed for a non-porous medium deal- 
ing with a freezing front (moving boundary problem). 
The analytical methods include the heat balance inte- 
gral method, the perturbation method and the series 
expansion method. Several numerical methods are 
available [4] for handling freezing in a non-porous 
environment ; for example, the Murray-Landis 
method, the variable time step method, the enthalpy 
formulation method and Landau’s transformation 
method. For the Murray-Landis method, one has to 
assume the initial position of the interface and the 
initial temperature distribution of the solid phase. It 
is noted that the choice of the initial position has a 
considerable effect on the required solution time. The 
variable time step method determines the time step 

such that the interface traverses one space mesh dur- 
ing that time. Special attention is needed to determine 

the proper time steps when the movement of the inter- 
face is very slow. The enthalpy formulation method 
transforms the temperature variable to the enthalpy 
variable. It eliminates the conditions to be specified at 
the interface and thus it is easy to model the mushy 
zone between both phases. In some special cases, this 
formulation will result in some non-physical tem- 
perature plateau profiles. In this study, Landau’s 
transformation method will be adopted to solve the 
moving boundary solidification problem in a porous 
medium. The basic idea is as follows : the solid-liquid 
interface is immobilized by introducing a new non- 
dimensional variable which expresses the location of 
a point within the phase (both the frozen phase and 
the non-frozen phase) as the ratio of its distance from 
the interface and the instantaneous thickness of the 
phase (for both the frozen phase and the non-frozen 
phase). With this transform, the original curvilinear 
non-uniform grids (as seen in Fig. 1) will be trans- 
formed into two regular uniform grids which are ideal 
for numerical calculations. This method has been 
applied to one-dimensional freezing problems by 
Beaubouff and Chapman [5] ; and to two-dimensional 
freezing problems by Saith [6] and Sparrow et al. [7]. 
Gadgil and Gobin [S] applied this method to inves- 
tigate a two-dimensional melting process for pure 
liquid within a rectangular enclosure in the presence 
of natural convection. This transformation has two 
advantages. (1) It is easy to apply to solid-liquid 
interface problems that have a complicated shape and 
surface boundaries. (2) There are no difficulties en- 
countered when adding the effects of natural convec- 
tion within the liquid. However, when this method is 
applied to two-dimensional problems, it generally 
results in complex equations that require iterative 
methods to obtain a solution. 

MATHEMATICAL FORMULATION 

Within the rectangular domain, natural convection 
and freezing processes proceed simultaneously. We 
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NOMENCLATURE 

A aspect ratio, L/H Y, A Y,, A Y, vertical Cartesian coordinate. 
C(X, t) height of the non-frozen phase at X 

and t Greek symbols 
F(X, Y, t) function of the interface thermal diffusivity [m’ s- ‘1 

Y gravitational constant [m sS2] ; thermal expansion coefficient 
H height of the test section [m] v kinematic viscosity [m s- ‘1 
H,, L, latent heat of fusion [J kg- ‘1 P density [kg mm ‘1 
K permeability [m’] ICI stream function. 
k,, k, thermal conductivity [W mm ’ “Cm ‘1 
L width of the test section [m] Subscripts 
n unit vector at interface C cold plate 
(I~, 4, heat flux at interface crit onset of instability 
RU Rayleigh number, FQjlATH/va H hot plate 
t time [s] 1 non-frozen phase 
s normalization factor, C(X, t)/L m interface 
T, T,, AT temperature [“Cl n out normal direction 
X horizontal Cartesian coordinate S frozen phase. 

consider the quasi steady state condition and assume for each time step. Figure 2 is the domain of this two- 
the freezing front velocity is much less than the liquid phase system, for which we have the following system 
motion velocity. This assumption is valid after the of equations : 
initial freezing front establishes itself. Initially for 
freezing to occur, it was necessary to cool the top plate 

below the freezing temperature (subcooled). Thus 
non-frozen phase 

when freezing occurs, the freezing front rapidly T2 ?2 _I 
extends into the test section as far as the freezing 
isotherm. This initial freezing phenomenon, which 

5!$+?& 352 

occurs in less than I min. is not included in this analy- 
sis. By assuming quasi steady state, the computation 
of the flow field in the non-frozen phase is steady state > 

(lb) 

a 

1 

u 
1 
0-g A 

b 
A 

FIG. I. Schematic diagram of the Landau transformation : (a) physical grid ; (b) computation grid where 
the frozen (upper) and non-frozen (lower) phases are shown. 



Natural convection in porous media-II. Freezing 

T=Tc, y=O 

H 

frozen phase 

Y=C(x) 

WXY) 
w KY) 

o,u T=T”,W=O X 

I I 
L 

FIG. 2. Boundary conditions applied to the freezing of a porous medium. 

S’T, w+g=o (2) 

interface condition 

1 

k,G -k,z = pH,Vn at F(X, Y, t) = 0 (3) 

where F(X, Y, t) = 0 is the interface position and H, 

the latent heat of liquid in the porous medium. P’, is 
the freezing front velocity directed into the liquid 
phase and k,, k, are thermal conductivities of the 
solid and liquid phase, respectively. The boundary 
conditions for such a system are : 

non-frozen phase 

$ = 0, T, = T,,, at F(X, Y, t) = 0 

$=O, T,= T,, at Y=O 

tji=O, z=O at X=O,L (4) 

frozen phase 

ij=o 

T, = T,,, at F(X, Y, t) = 0 

T, = T, at Y = H 

aT 
>=O at X=O,L. 
ax (5) 

Equation (3) is not suitable for numerical dis- 
cretization because the interface is not flat under natu- 
ral convection. A two-dimensional rectangular coor- 
dinate expression of equation (3) is needed for 
computation. After manipulation [9], equation (3) 
becomes 

[I, (gJ][k,$k,g] 

^I 

=pHs$f at Y=C(X,t). (6) 

alp, I a2F, i a$ af, a$ aF, 
xi=+FaP’=S EzFa8aP ( > 

(9) 

Equation (6) is in a form ideal for numerical dis- with the following boundary conditions : 

cretization. Equation (3) or equation (6) is basically 
an energy balance at the interface. 

Another difficulty occurs with the boundary con- 
ditions as shown in equations (4) and (5). Since it is 
a moving boundary problem, the interface position is 
not only a function of X and Y but also of time. 
In order to overcome this difficulty, we adopted a 
coordinate transform (Landau’s transform, as 
described previously) to alleviate this problem. By 
introducing the following new variables, the com- 
putational-domain becomes regular and uniform 1: 

non-frozen phase 

p;=x 
H’ 

frozen phase 

p = y- cw, t) Y/L-S 

H-C(X, t) = ~ l/A-S 

S=%‘) A=L, 
L ’ H 

(7) 

(8) 

Substituting these non-dimensionalizing variables 

into equations (1) and (2) yields : 

non-frozen phase 
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(‘F, 
;z=O, $=O at d=O.A 

ii;=], $=O at P=O 

ii; = 
T, - T, 

T,--T,, $=O at ?=A (10) 

frozen phase 

a2f7 1 a’T: 
~‘+(l-As)‘sy?=o (11) 

with the following boundary conditions : 

aF5 
z=O at f=O,A 

T?=O at 9=1 

T, - T<, 
f,,=-- 

TH - T<. 
at 9=0. (12) 

The interface equation remains unchanged. For 
steady state computation, the position of the interface 
can be obtained by setting the time derivative term in 
equation (6) equal to zero. Thus yielding 

1 PT, 

‘k’(H-LS) 87 - 

k, a?, 

HS ay 
a?, 

k,LaP 
=a C(X) = 

aFs aT, (13) 
k, a +k,Az 

The finite difference method is employed to dis- 
cretize the coupled differential equations. The same 
procedures described in Part I [IO] are used to com- 
pute the flow and the temperature field of the non- 
frozen phase ; in the frozen phase, the pure conduction 
calculation is involved. Equation (13) is solved after 
the temperature profiles in both phases are obtained. 
The newly obtained solution C(X) is used as a ten- 
tative boundary to compute the flow field of the non- 
frozen phase and the temperature field of the frozen 
phase. Iteration continues until the flow field and the 
temperature field in both phases, as well as the inter- 
face position, converge to a final value, corresponding 
to each experimental condition. As for the grid points, 
41 were chosen for the horizontal direction in both 
phases, 41 for the vertical direction in the non-frozen 
phase and 3 1 for the frozen phase. 

FREEZING EXPERIMENTS 

Since the experimental setup is essentially the same 
as described in Part I, only differences in the setup will 
be described here. A slightly different size test section 
was used-36.83 cm wide, 6.1 cm high and 5.61 cm 
deep. In these tests it was necessary to reduce the top 
plate temperature to below 0°C (below the lower limit 
of our circulating bath) in order for freezing to occur. 
To achieve these low temperatures, thermal electric 

devices were attached to the top plate. Thermal elec- 
tric devices were also attached to the bottom plate, 
providing fine control of the bottom plate tempera- 
ture. A schematic diagram of the device is shown in 
Fig. 3. The complex structure of these cooling (or 
heating) thermoelectric devices might cause non-uni- 
formity of surface temperatures. To alleviate this 
possibility the following design was adopted. There is 
a 0.63 cm (0.25 in.) clearance between the thermo- 
electric devices, and between the thermoelectric 
devices and the edge of the plates. The thermoelectric 
devices are soldered to a brass plate that is 1.23 cm 
(0.5 in.) thick. To further ensure that the temperature 
is uniform, a 1.23 cm thick stainless steel (304) plate 
is attached to the brass plate with a layer of thermal 
conducting compound between them. The tem- 
perature variation over the surface of the plate in 
contact with the porous medium (stainless steel) is 
less than O.l”C. The size of the thermoelectric devices 
(3.96 x 3.96 cm) determines the width of the plates (5 
cm). Since the devices are wired in series, their number 
(which determines the length of the plates) was limited 
by the d.c. power supplies available. 

As we have seen, the isotherms are visible in the 
non-frozen phase; however, this is not the case for 
the frozen phase. The frozen layer consists of solid 
ethyl salicylate and glass beads whose indices of 
refraction do not match. Thus, the frozen layer is 
opaque and the freezing front it easily observed. Again 
the entire temperature field of the non-freezing phase 
can be visualized using an incandescent light source. 

It was necessary to detcrminc, for the numerical 
calculations, the thermal conductivity of the solidified 
porous medium. A pure conduction experiment was 
set up to determine this quantity. The bottom plate 
was maintained at room temperature and the top plate 
was cooled to its lowest value-the limit of the thermal 
electric devices-thus establishing a thick frozen layer. 
The Rayleigh number based on the distance and tem- 
perature difference between the bottom plate and the 
solid-liquid interface was not sufficient to induce con- 
vection in the non-frozen phase. The solid-liquid 
interface was flat-having no undulations. After about 
3 h steady state conditions had been fully achieved. 
During this experiment, the isotherms in the non- 
frozen phase were monitored using the dye laser. 

These isotherms were straight and did not change 
their positions when steady state WZiS achieved. For 
pure conduction with no internal heat sources, the 
heat transfer across the solid-liquid interface is con- 

tinuous. Thus 

& at interface = 4, at interface 

+ k, = k, g$g (14) 
m c I 

where k, is the thermal conductivity of frozen porous 
medium, k, the thermal conductivity of non-frozen 
porous medium, AY, the distance from the bottom 
plate to the interface, AY, the distance from the top 
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medium 

FIG. 3. Schematic diagram showing the structure of the cooling and heating plates (all dimensions 
are in cm). 

plate to the interface, and T,,, the melting temperature 
(interface temperature). In this manner, the thermal 
conductivity of the solidified porous medium is found 
to be 0.408 W m ’ ‘C- ’ (for the non-solidified porous 
medium k, = 0.528 W mm ’ “C- ‘). Another important 
thermal property needed is the latent heat of the 
porous medium during the freezing (or melting) pro- 
cess. Accordingly, the following empirical formula 
(Chemical Engineers’ Handbook [I 11) was used : 

13,5 = 5,. (cal g-mol- ’ Km ‘) 

Tr (K) 

+ L, = 19.25 (cal g- ‘) = 93 671 (J kg- ‘) (15) 

where Lf is the latent heat and T,. the freezing 
temperature. 

Since the interface, during the freezing experiment 

is not flat when convection is present, a mean value 
of the height (distance between the bottom plate and 
the interface) is used in defining a mean Rayleigh 
number. This mean Rayleigh number is represented 
as (Ra). 

A typical freezing experiment was performed as 
follows : a convection pattern was established by rais- 
ing the bottom plate temperature to 50.6”C and low- 
ering the top plate temperature to 5.9”C (well above 
the equilibrium freezing temperature of ethyl sali- 
cylate). The data were determined using the laser light 

source and are shown as discrete points in Fig. 4. 
After sufficient time (several hours), a steady state 
condition is reached (see Fig. 4(a)). The top plate 
temperature is constantly monitored with a strip chart 
recorder. The mixture must be subcooled before freez- 
ing will occur. By adjusting the power to the thermal 
electric devices, the temperature of the top plate is 
reduced to -6.8”C and maintained at this subcooled 
temperature (freezing temperature is 2S”C) until 
freezing begins. When freezing begins, the top plate 
temperature suddenly rises, then begins its return to 
-6.8”C. This sudden rise in the plate temperature is 
due to the latent heat of freezing. The initial freezing 
period (when the temperature rises), lasts about 4& 
50 s. The solid-liquid interface has undulations that 

match the isotherm pattern in the non-frozen phase. 
After steady state has been reached, the pattern in 
Fig. 4(b) is observed. These data were taken about 2 

h after the top plate temperature returned to -6.8”C. 
The height of the nonfrozen porous layer has been 
reduced. The temperatures of the interface (2.5”C) 
and the bottom plate (50.6’C) are fixed. This 
reduction in height accounts for the reduction of Ra 

and the corresponding reduction in the intensity of the 

rolls. The top plate temperature was then decreased 
suddenly (by dialing in the appropriate power to the 
thermal electric devices) to - 10.8”C ; after steady 
state was reached (in 2-3 h), the results are shown 
in Fig. 4(c). The intensity of the rolls have further 
decreased and the liquid-solid interface has become 
flatter (matching the isotherm pattern). Figure 4(d) 
shows the steady state pattern when the top plate 
temperature is - 13.6”C. The convection has further 
weakened ; the mean Rayleigh number is 42.5 which 
is slightly larger than the critical Rayleigh number. 
This process was repeated until the top plate tem- 
perature reached - 16.7”C (the limit of the thermal 
electric devices). The convection was so weak at this 
stage (Fig. 4(e)) that the heat transfer mode in the 
porous medium was almost pure conduction. The 
mean Rayleigh number associated with this condition 
is 40.8, which is slightly above the critical Rayleigh 
number of 39.5. 

After the freezing experiments were completed, 

melting experiments were conducted. The top plate 
temperature was increased from - 16.7 to - 13.8”C 
(Fig. 4(f)). As the temperature of the top plate was 
increased, the convection cells began to grow as the 
freezing front retreated. Steady state was achieved 
within 2 h. When the top plate temperature was 
further increased (- 10.8”C), tiny bubbles appeared 
at the interface (Fig. 4(g)). These bubbles are believed 
to be from the dissolved air in the ethyl salicylate that 
is released during freezing, and accumulates at the 
solid-liquid interface as the freezing front retreats. 
This has a twofold effect: (I) it interferes with the 
observation of the interface, and (2) it affects the 
heat transfer. As the top plate temperature further 
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b 

h 

e. 4. Plots comparing the numerical and eq_erimental results: (a) Ra =50.5; (b) Ra = 47.3 ; (c) 
Ra = 44.3; (d) Ra = 42.4; (e) Ra = 40.8; (f) Ra = 42; (g) Ra = 45.7; (h) Ra = 51.9. The theoretical 
isotherms (solid lines) are as follows: 2.5, 18.6, 24.1, 26 and 38.2’C. The experimental isotherms-2.5, 

18.6, 26 and 38.2”C are represented by 0, 0, n and A respectively. Streamlines are also shown. 

increases, this phenomenon (appearance of bubbles) 
became more significant (Fig. 4(h)); resulting in a 
melting-freezing process that is irreversible. The tem- 
perature field is different than the corresponding pat- 
tern that appeared during freezing stages. When the 
temperature of the top plate was brought back to 
4.9”C, all the frozen zone had melted (Fig. 4(i)). In 
an effort to eliminate these bubbles, the ethyl salicylate 
was boiled before mixing it with glass beads. The 
results, however, were pretty much the same-maybe 
fewer bubbles were released. Unfortunately, air may 
have been re-absorbed by the ethyl salicylate during 
the filling (and mixing) process. During the melting 
stage the experimentally determined isotherm patterns 
are not as regular as those in the freezing stage due to 
the existence of bubbles which accumulate at the 
frozen interface. 

The effect of the aspect ratio of the test section on 
the number of cells in the test section was examined. 
By setting the top plate temperature equal to - 15.3”C 
and the bottom plate temperature equal to 43.2”C, 
the frozen layer extends into the test section resulting 
in Ra = 34.4 (< Ra,,,,). The reduced depth of the non- 
frozen porous medium resulted in an increase of the 
aspect ratio of the test section from 6.0 to 8.1. The 

bottom plate is then heated so that Ra = 43.7 
(> Ru,,,J, and the number of cells present in the test 

section is eight. Then the temperature of the bottom 
plate was incrementally increased resulting in an 
incremental melting of the frozen layer (and also an 
increase in Rayleigh number). In this manner the 
aspect ratio of the test section was incrementally 
changed from 8.1 to 6.0 (when the frozen layer is 
completely melted). Although the aspect ratio of the 
test section changes, the number of rolls (eight) in 
the test section does not change. Thus, the cell size 
depends on the initial geometry and does not change 
after the rolls develop-even though the aspect ratio 
of the test section changes from 8. I to 6.0. 

Beck [12] used both a linear stability analysis and 
an energy method to obtain a formula for the pre- 
ferred mode (which is the change between m rolls to 
m+ 1 rolls) based on the aspect ratio of the test 
section. In these experiments (Parts I and II) the 
aspect ratio was varied in several ways : (1) by increas- 
ing the test section width-keeping the height fixed ; 
(2) by decreasing the height of the test section-keep- 
ing the width fixed ; and (3) by freezing-which in 
effect decreases the height of the test section, while 
maintaining the ‘top plate’ temperature constant 
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Table 1. Aspect ratio of test section and number of rolls in test section 

Dimension 
width x height x depth 

Roll number Roll number 
Aspect ratio of h,,,,, h I.nl*x predicted by measured in 

test section, h, m-l +rn m-+m+l Beck [12] (m) experiment 

Test section I 
54.60 x 7.54 x 4.78 cm 

Test section II 
36.83 x 6. IO x 5.61 cm 

Test section II with freezing 
36.83 x 4.56 x 5.61 cm 

Test section II with reduced height 
36.83 x 2.95 x 5.61 cm 

7.24 

6.04 

8.08 

12.50 

(2.5”C). Table I shows a comparison between the 
measured roll number and the roll number predicted 
by Beck. The agreement is reasonably good. 

NUMERICAL SIMULATIONS 

The steady state numerical simulation starts with 
established rolls in the porous medium and no freez- 
ing-just as the experiments were performed; say, 
Ra = 50.5 (see Fig. 4(a)). The temperature field (solid 
lines) obtained numerically are superimposed on the 
experimental data in Fig. 4. The temperature of the 
top plate is reduced to a subcooled temperature 
- 6.8”C when freezing commences (see Fig. 4(b)) ; the 
resulting Ra = 47.3. The streamline $ = 0.01 cor- 
responds to the T = 2.5”C isotherm, which is the 
freezing front. As the freezing front moves down, 
convection is suppressed, and the undulations of the 
isotherms (solid lines in figures) become weaker. The 
streamline plot shows the rolls are distorted, as if 
squeezed by the interface. The freezing front does not 
shift the rolls in a horizontal direction; the rolls are 
distorted but the wavelength of the cells (1) remain the 
same. Before freezing the maximum stream function 
($,,,) is 1.5 (see Fig. 4(a)) ; after freezing $maX = 1.1 
(see Fig. 4(b))-indicating a decrease in the strength 
of convection. The top plate temperature in the 
numerical simulation was then set at - 108°C which 
corresponds to Ra = 44.3 (Fig. 4(c)). The flow and 
temperature field for Ra = 47.3 were used as initial 

guess and iterated until the convergence criterion of 

6.48 7.48 7 8 

5.48 6.48 6 6 

7.48 8.49 8 8 

12.49 13.49 13 12 

10 -5 was met. Again the streamline $ = 0.01 
(T = 2.5”C) represents the freezing front-which 

moves further down and further suppresses the con- 
vection. The maximum stream function is 0.3. For the 

case Ra = 42.4 (Fig. 4(d)) and 40.8 (Fig. 4(e)), the 
isotherms become flat and the maximum stream func- 
tion in Fig. 4(d) is 0.01. That is, there is essentially no 
convection present-heat transfer is by conduction. 
In Fig. 4(d), the streamline plots show an asymmetry 
in the horizontal direction due to a relaxation of the 
convergence criterion to 10m4 instead of 10-j. Since 
the convergence rate depends on the flow field and 
temperature field, it is very slow when the flow is 
nearly zero. The agreement is generally good between 
experiments and the numerical results. 

The computations to simulate the melting process 

are the reverse of the freezing process (see Figs. 4(f)- 
(h)). As the boundary temperature increases, the 
interface retreats and the convection rolls become 
more intense and the undulations of the isotherms 
increase. Likewise the interface (2.5”C isotherm) 
becomes wavy. The generation of bubbles in the 
experiments during the melting process (Figs. 4(e)- 
(h)) causes discrepancies between experiments and 
numerical calculations. 

From the temperature field, the Nusselt number 
distribution is computed at each freezing state. Table 
2 shows the average Nusselt number vs Ra. As z 
decreases the strength of natural convection decreases. 
When Ra = 40.86, which is close to the critical Ray- 
leigh number, the Nusselt number is almost unity; 

Table 2. Average Nusselt number along bottom plate and interface during 
freezing-melting process 

Freezing stage Melting stage 

Average Average Average Average 
Mean Nusselt Nusselt Mean Nusselt Nusselt 

Rayleigh number at number at Rayleigh number at number at 
number bottom interface number bottom interface 

50.5 1.215 1.203 40.8 1.000 1.000 
47.3 1.119 1.126 42.0 1.000 1.000 
44.3 1.011 1.012 43.7 1.002 1.003 
42.4 I .ooo I .ooo 45.7 1.066 1.070 
40.8 1.000 1.000 51.9 I.248 1.232 
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CONVECTION NATURELLE DANS LES MILIEUX POREUX-II. CONGELATION 

R&umC-On rkalise des exptriences de congtlation et de fusion pour visualiser I’interaction entre la 
convection naturelle et le mtcanisme de changement de phase dans les milieux poreux. La transformation 
de LANDAU est appliquke pour rksoudre le problime de frontitre mobile irrtgulikre et les rtsultats du 
calcul s’accordent bien avec les donnkes exptrimentales. On trouve que le mCcanisme de convection 
naturelle est contrBl6 par le nombre de RAYLEIGH moyen et s’affaiblit quand apparait le m&anisme de 
congklation. Diffkrents rapports de forme sont examinks et ils s’accordent raisonnablement bien avec la 

formule de BECK pour une cavitt‘ rectangulaire. 

NATtjRLICHE KONVEKTION IN PORi)SEN MEDIEN-II. MIT GEFRIERVORGANG 

Zusammenfassung-Urn die Wechselwirkung zwischen natiirlicher Konvektion und den Vorgangen der 
Phaseninderung in pordsen Medien sichtbar zu machen, werden Gefrier- und Schmelzversuche durch- 
gefiihrt. Das Problem der ungleichml0ig bewegten Grenzen wird mit Hilfe der Transformation von Landau 
geliist. Die Rechenergebnisse stimmen gut mit Versuchsdaten iiberein. Es zeigt sich, dalj der Vorgang der 
natiirlichen Konvektion von der mittleren Rayleigh-Zahl gesteuert wird und mit dem Fortschreiten des 
Gefriervorgangs schwicher wird...Es werden unterschiedliche Abmessungsverhgltnisse untersucht, wobei 
sich eine verhiltnismlljig gute Ubereinstimmung mit der von Beck vorgeschlagenen Formel fiir den 

rechteckigen Hohlraum ergibt. 

ECTECTBEHHAX KOHBEKL@IJl B IIOPUCTbIX CPEQAX-II. 3AMOPA)KKMBAHHE 

hlllOTVlS-npOBeneHb1 3KCIIepHMeHTbI II0 3aMOpaNiBaHBIO II OTTaUBaHHEO C 4eJIbH) BH3yaJIIi3aqmi 

BrtallMOE&ZTBHK Memy ,TpOUeCCaMH eCTeCTBeHH0i-i KOHBeKUHH H @30BOrO "e,,exOna B IIOpACTbIx 

cpenax. 3anara nBalKy4eiicrrpaHHlJbI HenpaBHJIbHOfi+OpMbI~IIIaeTcKc BClIOnb30BaHHeM npeo6paso- 

BaHBIl HaHLtay. nOJIy'leH0 XOpOIllee COrJIaCHe MexKny pe3yJlbTaTaMH paWeTa W 3KCnepLU.%eHTa,,bHbIMH 

LIaHHbIMB. HaiiAeHO, 'IT0 IIpOWCC ecTeCTBeHHOfi KOHBeKUHW OIIpeAenKeTCK CpenHHM YHCJIOM P3JleK A 

OCna6eBaeT II0 Mep pa3BHTSW IlpOWCCa 3aMOpaWiBaHEiH. PaCCMaTpABaIOTCK pa3JIHWbIe OTHOIUeHHK 

CTOpOH,U 06HapymeHO,=ITO OHH yAOBJIeBOpkiTeJIbH0 OlIHCbIBaIOTCK ypaBHeHHeM 6eKa &lIX o6aehfa II&XI- 
MO~OJIbHOir@OpMbI. 


